
Before multi-lead electrocardiogram (ECG) systems were readily available
a significant amount of research was performed into the optimal placement
of bipolar ECG electrodes for ambulatory and exercise ECG monitoring.
However, bipolar chest leads (BCLs) are used rarely nowadays. In recent
years, a number of patch based ECG devices have emerged focused on
continuous rhythm monitoring. ECG patches typically record a single BCL
but are constrained by small inter-electrode distances making some ECG
features, such as P-waves, difficult to detect. In this study we aim to
determine new BCLs at a range of small inter-electrode distances for
maximum P-wave and QRS amplitude, providing optimal patch locations
for long-term ECG rhythm monitoring.
The study data consisted of 120-lead BSPMs recorded from 744 patients
(229 healthy, 278 MI, 237 LVH). The dataset was then randomly split into
a training dataset of 560 patients and a testing dataset of the remaining 184
patients. To improve spatial resolution, the 120-lead were expanded to 352
nodes which correspond to the nodes of the Dalhousie torso. An exhaustive
lead selection method was applied to each map from which 61,776 unique
bipolar ECG leads were established for each patient. Inter-electrode
distances for each lead was then calculated from the Euclidean distance
between nodes on the Dalhousie torso model. Maximum P-wave and QRS
amplitudes were calculated from each lead and median values taken across
the training population. New BCLs were then determined at inter-electrode
distances of 1, 2, 3 and 4 in. and compared to the Mason-Likar (ML) Limb
leads and the current standard ECG patch location (below the left
sternoclavicular joint towards the left nipple).
There was a strong linear relationship between inter-electrode distance and
median ECG amplitude achieved for both the P-wave (R = 0.98) and QRS
complex (R = 0.93). Generally, the best performing BCLs for P-wave
amplitude were located on or just above precordial leads V1 and V2. For the
QRS complex, electrodes placed horizontally between the third and fourth left
intercostal space provided the greatest QRS amplitude.

This study provides a definition of the optimal placement of bipolar ECG
patches for P-wave and QRS-complex signal amplitude, at specific inter-
electrode distances. The demonstrated improvement in signal magnitude may
lead to more accurate rhythm monitoring using ECG patches by reducing the
amount of false positive alarms due to high signal-noise.

Table 1

ECG amplitudes from new bipolar chest leads compared to the Mason-Likar
Limb Leads and the currently used ECG patch location.

Lead P-wave amplitude (μV) QRS amplitude (μV)

Current patch placement 16 [0–41] 458 [20–1206]
BCLP1 30 [2–92] 180 [8–675]
BCLP2 55 [0–124] 145 [0–1005]
BCLP3 89 [9–167] 413 [8–1619]
BCLP4 105 [9–188] 467 [9–1692]
BCLQRS1 14 [0–41] 621 [68–1629]
BCLQRS2 27 [4–68] 1006 [100–3254]
BCLQRS3 36 [10–96] 1576 [265–4601]
BCLQRS4 42 [10–107] 1784 [265–4602]
ML I 17 [0–61] 172 [35–712]
ML II 128 [22–216] 982 [107–2718]
ML III 52 [2–134] 485 [7–816]

Values represent median and [96% range].
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Background: Implantable cardiac monitors (ICMs) are valuable tools
for long-term ECG monitoring, especially for AF. However, AF detection
algorithms based solely on R-R interval variability are prone to a high
number of false positives due to ectopic beats and noise.
Objective: The purpose of this analysis is to report on the simulated
performance of an AF algorithm when using QRS morphology information.

Methods: Twelve-lead ECG data from 487 patients from 6 different clinical
studies (collected in both in-clinic and ambulatory settings), including 35 AF
patients, were used to evaluate the AF algorithm. The ECG vector V2–V3was
used to approximate the implanted ICM electrode configuration. The
algorithm made a classification of AF or Non-AF for every 2-min window.
Morphology Evaluation: The V2–V3 signal morphology of each
detected beat in the 2-min window was compared against a QRS
template built during sinus rhythm. A match score was assigned to each
beat based on the similarity to the template. The percentage of mismatched
beats per 2-min window (for example, due to noise or ectopic beats) was used
to determine the degree of R-R interval variability not associated with AF. The
user-programmed levels for ectopy rejection and AF sensitivity will determine
the thresholds used to reject potential AF rhythms.
Results: A total of 44,716 2-min windows were evaluated. Morphology
information was available in 228 windows of true AF along with 51 windows of
false positives for AF. Morphology assessment was not conducted for 4 patients
in persistent AF throughout the data recording (i.e. no sinus rhythm). Using the
morphology evaluation, the results ranged from 41.2% reduction in false
positives (21/51 windows) with no impact on sensitivity, to 56.9% (29/51
windows) reduction in false positives with a cost of missing 5 true AF windows
(97.8% sensitivity) depending on how the ectopy rejection level is tuned.
Conclusions: Assessment of EGM morphology in an ambulatory AF
detection algorithm canmeaningfully reduce false positives with minimal impact
to sensitivity.
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Background: A new cardiac electrical biomarker (CEB) has been
identified with reportedly high diagnostic accuracy in the detection of acute
myocardial ischemic injury (AMII). The CEB is constructed continuously
in real-time from an electrocardiogram (ECG)/cardiac monitoring device
(VectraplexECG System, VectraCor Inc, Totowa, NJ).
Objective: Perform a Bayesian analysis of the predictive value of the
CEB based on changes in prevalence of disease.
Methods: Data from 316 original CEB study test case ECGs were
retrospectively reviewed and a Bayesian analysis was performed to
construct the predictive value curves of positive and negative CEB test
results in the detection of AMII. The original study gold standard was
based on adjudicated physician interpretations of initial 12-lead ECGs
acquired from patients presenting with chest pain. The CEB is constructed
from a 12-lead derived ECG (dECG). The dECG is synthesized from 3 leads
{I, aVF, V2} of the standard 12-lead ECG. The prevalence of AMII in this
study population was 21.2%. A subsequent CEB post-marketing study of 138
patients was performed for which Bayesian analysis predictive value curves
were also constructed. In this follow-up study the serum troponin I was the
gold standard for detection of AMII yielding a prevalence of disease of 13%.
The posterior vs. prior probability Bayesian curves of the CEB positive and
negative predictive values were compared for actual, worst case and best case
scenarios. Area between the curves was used for the statistical analysis using
theMann-Whitney U test. Diagnostic accuracy parameters included sensitivity
(Sn), specificity (Sp), negative and positive predictive values (NPV, PPV), and
likelihood ratios (LR+, LR−).
Results: No statistically significant differences were noted at p b 0.05
between the 2 independent CEB Bayesian analysis area between the curves
for the actual, worst and best case scenarios. The actual data diagnostic
accuracy parameters for each study were as follows:

Actual data Sn Sp NPV PPV LR+ LR−

Original 0.922 0.913 0.977 0.747 10.598 0.085
Follow-up 0.895 0.953 0.981 0.773 18.968 0.110
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Conclusions: The Bayesian CEB predictive value curves appear to be
similar between the 2 independent studies that had different prior
probabilities of AMII. This suggests that the ROC cut-offs chosen for
detection of AMII may be accurate. Further studies are needed to validate
these findings.
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Background: Short-term variability of the QT-interval (STV-QT) has
shown to be associated with an increased risk of ventricular arrhythmias.
However, little is known about the diurnal behaviour of STV-QT.
Furthermore, it is not known whether a certain time point might be more
sensitive to identify the patient at risk. Therefore, we aim to investigate if
a.) STV-QT behaves in a circadian pattern and b.) if this behaviour differs
between high and low risk patients.
Methods: As part of the EU-CERT-ICD study, 24 h ambulatory Holter
recordings were performed in patients receiving an ICD for primary
prophylactic indication. Since clinical end points (e.g. appropriate shocks)
are not yet known, patients were categorized based on their arrhythmia
score (AS), a custom-made weighted score of the number of arrhythmic
events on the recording. STV-QT was calculated for every hour in a
random sample of 15 patients with high AS (N1ooo arrhythmic events in
24 h) and 15 patients with low AS (b100 arrhythmic events in 24 h).
Results: The overall dynamicity of STV-QT showed high intra- and
interindividual variability, with a peak in the early morning (8.00 h) and in
the late afternoon (18.00 h). When the patients were categorized based on
their AS, the circadian pattern of STV-QT differed between patients
with high and low AS. Patients with high AS showed a significant higher
STV-QT compared to patients with low AS at both 8.00 h (1.22 ± 0.55 vs
0.60 ± 0.24, p b 0.01) and 18.00 h (1.12 ± 0.39 vs 0.64 ± 0.29, p b 0.01).
Conclusion: STV-QT displays a peak in the early morning and late
afternoon, mainly in patients with a high AS. This increase of STV-QT at
waking hours might reflect an increased risk of arrhythmias at that moment
during the day. Determination of STV-QT at these time points might thus be
more sensitive in identifying patients at high risk of ventricular arrhythmias.
Funding: The research leading to the results has received funding from
the European Community's Seventh Framework Programme FP7/2007-
2013 under grant agreement n8 602299.
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Background: Medical devices' alarm have high sensitivity to minimize
the risk of missing adverse events. This results in many alarms - up to
hundreds per patient per day in clinical units such as the ICU and ED.
Many of these are clinically irrelevant. The problem is further exacerbated

by the fact that the vast majority are false alarms (86–99%), resulting in
reduced patient safety and staff satisfaction. Here we develop a novel
algorithm to identify and report statistics on features from the originating
signals indicative of preventable non-physiological events that ultimately
lead to false alarms such as poor electrode placement.
Methods: We train an ensemble tree on multiple-expert annotated ECG
alarms (training = 6602; test = 1651). We then use a reverse mapping
approach on the nodes to identify the actionable root causes of each false
alarm. To determine significant features for a single alarm, for each tree we
identify all of the relevant nodes and account for the importance of each
node to determine its contribution to the alarm being classified as a false
positive. For each false alarm, we then sum over all the trees to get scores
for all of the features and threshold. Finally, we count the number of
instances that each feature results in false alarms at a hospital level.
Results: The classifier resulted in a high sensitivity and specificity:
82.5% and 93.4%, respectively, (ROC AUC = 0.94). This tackles the joint
task of binary classification of true and false alarms and identification of
features triggering false alarms. In the training set, we found the primary
actionable drivers of false alarms at the study hospital and suggest
corresponding actions that could prevent them in the future: patient motion
and respiration (mild skin abrasion or gritty gel), muscle tremor (move
electrode to avoid culprit muscle), intermittent or missing leads (alcohol
wipe or hair removal at electrode site), and gain (adjust monitor settings).
Conclusion: Here we develop a classifier that has both high performance
in differentiating false alarms from true alarms and can assist in identifying
drivers of the identified false alarms. This approach is advantageous as it
allows the hospital to develop a custom strategy for alarm management that
accounts for their unique patient population, staff behaviors and
preferences, available resources, and the clinical environment. We believe
this data-driven approach can assist hospitals in developing tailored
solutions to better tackle alarm fatigue.
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Background: The 2009 electrocardiographic Selvester QRS score for
LBBB (2009 LBSS) is prognostic in CRT-patients. Previous studies show
limited diagnostic performance in detecting and quantifying left ventricular
(LV) scar determined by cardiovascular magnetic resonance imaging
(CMR). We aimed to develop an improved method for ECG detection of
scar using a large and broadly selected dataset of patients with LBBB.
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